Menu

Market


Medium

Parent groups: Market > Ammunition & Charges > Hybrid Charges > Faction Charges
Sister groups: Extra Large | Large | Medium | Small

Market Items

Image Name EM Exp Kin The Market Price
Caldari Navy Antimatter Charge M
Consists of two components: a shell of titanium and a core of antimatter atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

50% reduced optimal range.

    16.1 11.5 606
Caldari Navy Iridium Charge M
Consists of two components: a shell of titanium and a core of iridium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

20% increased optimal range.
24% reduced capacitor need.

    9.2 6.9 640
Caldari Navy Iron Charge M
Consists of two components: a shell of titanium and a core of iron atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

60% increased optimal range.
30% reduced capacitor need.

    6.9 4.6 676
Caldari Navy Lead Charge M
Consists of two components: a shell of titanium and a core of lead atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

50% reduced capacitor need.

    11.5 6.9 682
Caldari Navy Plutonium Charge M
Consists of two components: a shell of titanium and a core of plutonium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

37.5% reduced optimal range.
5% reduced capacitor need.

    13.8 11.5 523
Caldari Navy Thorium Charge M
Consists of two components: a shell of titanium and a core of thorium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

12.5% reduced optimal range.
40% reduced capacitor need.

    11.5 9.2 680
Caldari Navy Tungsten Charge M
Consists of two components: a shell of titanium and a core of tungsten atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

40% increased optimal range.
27% reduced capacitor need.

    9.2 4.6 594
Caldari Navy Uranium Charge M
Consists of two components: a shell of titanium and a core of uranium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

25% reduced optimal range.
8% reduced capacitor need.

    13.8 9.2 716
Dread Guristas Antimatter Charge M
Consists of two components: a shell of titanium and a core of antimatter atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

50% reduced optimal range.

    16.8 12.0 12.071
Dread Guristas Iridium Charge M
Consists of two components: a shell of titanium and a core of iridium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

20% increased optimal range.
24% reduced capacitor need.

    9.6 7.2 706
Dread Guristas Iron Charge M
Consists of two components: a shell of titanium and a core of iron atoms suspended in a plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

60% increased optimal range.
30% reduced capacitor need.

    7.2 4.8 316
Dread Guristas Lead Charge M
Consists of two components: a shell of titanium and a core of lead atoms suspended in a plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

50% reduced capacitor need.

    12.0 7.2 2.963
Dread Guristas Plutonium Charge M
Consists of two components: a shell of titanium and a core of plutonium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

37.5% reduced optimal range.
5% reduced capacitor need.

    14.4 12.0 1.550
Dread Guristas Thorium Charge M
Consists of two components: a shell of titanium and a core of thorium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

12.5% reduced optimal range.
40% reduced capacitor need.

    12.0 9.6 1.207
Dread Guristas Tungsten Charge M
Consists of two components: a shell of titanium and a core of tungsten atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

40% increased optimal range.
27% reduced capacitor need.

    9.6 4.8 329
Dread Guristas Uranium Charge M
Consists of two components: a shell of titanium and a core of uranium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

25% reduced optimal range.
8% reduced capacitor need.

    14.4 9.6 2.125
Federation Navy Antimatter Charge M
Consists of two components: a shell of titanium and a core of antimatter atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

50% reduced optimal range.

    16.1 11.5 659
Federation Navy Iridium Charge M
Consists of two components: a shell of titanium and a core of iridium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

20% increased optimal range.
24% reduced capacitor need.

    9.2 6.9 846
Federation Navy Iron Charge M
Consists of two components: a shell of titanium and a core of iron atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

60% increased optimal range.
30% reduced capacitor need.

    6.9 4.6 808
Federation Navy Lead Charge M
Consists of two components: a shell of titanium and a core of lead atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

50% reduced capacitor need.

    11.5 6.9 648
Federation Navy Plutonium Charge M
Consists of two components: a shell of titanium and a core of plutonium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

37.5% reduced optimal range.
5% reduced capacitor need.

    13.8 11.5 768
Federation Navy Thorium Charge M
Consists of two components: a shell of titanium and a core of thorium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

12.5% reduced optimal range.
40% reduced capacitor need.

    11.5 9.2 707
Federation Navy Tungsten Charge M
Consists of two components: a shell of titanium and a core of tungsten atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

40% increased optimal range.
27% reduced capacitor need.

    9.2 4.6 850
Federation Navy Uranium Charge M
Consists of two components: a shell of titanium and a core of uranium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

25% reduced optimal range.
8% reduced capacitor need.

    13.8 9.2 897
Guardian Antimatter Charge M
Consists of two components: a shell of titanium and a core of antimatter atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

50% reduced optimal range.

    16.8 12.0 7.109
Guardian Iridium Charge M
Consists of two components: a shell of titanium and a core of iridium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

20% increased optimal range.
24% reduced capacitor need.

    9.6 7.2 409
Guardian Iron Charge M
Consists of two components: a shell of titanium and a core of iron atoms suspended in a plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

60% increased optimal range.
30% reduced capacitor need.

    7.2 4.8 257
Guardian Lead Charge M
Consists of two components: a shell of titanium and a core of lead atoms suspended in a plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

50% reduced capacitor need.

    12.0 7.2 858
Guardian Plutonium Charge M
Consists of two components: a shell of titanium and a core of plutonium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

37.5% reduced optimal range.
5% reduced capacitor need.

    14.4 12.0 1.106
Guardian Thorium Charge M
Consists of two components: a shell of titanium and a core of thorium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

12.5% reduced optimal range.
40% reduced capacitor need.

    12.0 9.6 752
Guardian Tungsten Charge M
Consists of two components: a shell of titanium and a core of tungsten atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

40% increased optimal range.
27% reduced capacitor need.

    9.6 4.8 361
Guardian Uranium Charge M
Consists of two components: a shell of titanium and a core of uranium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

25% reduced optimal range.
8% reduced capacitor need.

    14.4 9.6 1.625
Guristas Antimatter Charge M
Consists of two components: a shell of titanium and a core of antimatter atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

50% reduced optimal range.

    15.4 11.0 859
Guristas Iridium Charge M
Consists of two components: a shell of titanium and a core of iridium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

20% increased optimal range.
24% reduced capacitor need.

    8.8 6.6 25
Guristas Iron Charge M
Consists of two components: a shell of titanium and a core of iron atoms suspended in a plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

60% increased optimal range.
30% reduced capacitor need.

    6.6 4.4 10
Guristas Lead Charge M
Consists of two components: a shell of titanium and a core of lead atoms suspended in a plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

50% reduced capacitor need.

    11.0 6.6 119
Guristas Plutonium Charge M
Consists of two components: a shell of titanium and a core of plutonium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

37.5% reduced optimal range.
5% reduced capacitor need.

    13.2 11.0 423
Guristas Thorium Charge M
Consists of two components: a shell of titanium and a core of thorium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

12.5% reduced optimal range.
40% reduced capacitor need.

    11.0 8.8 169
Guristas Tungsten Charge M
Consists of two components: a shell of titanium and a core of tungsten atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

40% increased optimal range.
27% reduced capacitor need.

    8.8 4.4 8
Guristas Uranium Charge M
Consists of two components: a shell of titanium and a core of uranium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

25% reduced optimal range.
8% reduced capacitor need.

    13.2 8.8 434
Shadow Antimatter Charge M
Consists of two components: a shell of titanium and a core of antimatter atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

50% reduced optimal range.

    15.4 11.0 889
Shadow Iridium Charge M
Consists of two components: a shell of titanium and a core of iridium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

20% increased optimal range.
24% reduced capacitor need.

    8.8 6.6 32
Shadow Iron Charge M
Consists of two components: a shell of titanium and a core of iron atoms suspended in a plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

60% increased optimal range.
30% reduced capacitor need.

    6.6 4.4 3
Shadow Lead Charge M
Consists of two components: a shell of titanium and a core of lead atoms suspended in a plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

50% reduced capacitor need.

    11.0 6.6 42
Shadow Plutonium Charge M
Consists of two components: a shell of titanium and a core of plutonium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

37.5% reduced optimal range.
5% reduced capacitor need.

    13.2 11.0 156
Shadow Thorium Charge M
Consists of two components: a shell of titanium and a core of thorium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

12.5% reduced optimal range.
40% reduced capacitor need.

    11.0 8.8 22
Shadow Tungsten Charge M
Consists of two components: a shell of titanium and a core of tungsten atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

40% increased optimal range.
27% reduced capacitor need.

    8.8 4.4 6
Shadow Uranium Charge M
Consists of two components: a shell of titanium and a core of uranium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired.

25% reduced optimal range.
8% reduced capacitor need.

    13.2 8.8 552


Database: Invasion 2 (2019-11-26)

User: Register | Login